1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
| import torch from torchvision import transforms from torchvision import datasets from torch.utils.data import DataLoader import torch.nn.functional as F import torch.optim as optim import os
batch_size = 60
def get_mean_std(dataset, ratio=0.01): """计算数据集的均值和方差 """ dataloader = torch.utils.data.DataLoader(dataset, batch_size=int(len(dataset)*ratio), shuffle=True, num_workers=4) train = iter(dataloader).next()[0] mean = np.mean(train.numpy(), axis=(0,2,3)) std = np.std(train.numpy(), axis=(0,2,3)) return mean, std
transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.2888097,), (0.3549146,)) ])
train_dataset = datasets.FashionMNIST(root='./dataset/fmnist/', train=True, transform=transform, download=True) test_dataset = datasets.FashionMNIST(root='./dataset/fmnist/', train=False, transform=transform, download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=2) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Conv2d(1, 64, kernel_size=1) self.conv2 = torch.nn.Conv2d(64, 64, kernel_size=3) self.conv3 = torch.nn.Conv2d(64, 128, kernel_size=3) self.conv4 = torch.nn.Conv2d(128,128, kernel_size=3) self.linear5 = torch.nn.Linear(2048, 512) self.linear6 = torch.nn.Linear(512, 10) self.bn1 = torch.nn.BatchNorm2d(64) self.bn2 = torch.nn.BatchNorm2d(128) self.pooling = torch.nn.MaxPool2d(2) self.drop1 = torch.nn.Dropout2d()
def forward(self, x): batch_size = x.size(0) x = torch.nn.functional.relu(self.bn1(self.pooling(self.conv2(self.conv1(x))))) x = torch.nn.functional.relu(self.bn2(self.pooling(self.conv4(self.conv3(x))))) x = x.view(batch_size, -1) x = torch.nn.functional.relu(self.linear5(x)) x = self.drop1(x) return self.linear6(x)
model = Net()
criterion = torch.nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
e_list = [] l_list = [] running_loss = 0.0
def train(epoch): running_loss = 0.0 Loss = 0.0 for batch_idx, data in enumerate(train_loader, 0): inputs, target = data optimizer.zero_grad()
outputs = model(inputs) loss = criterion(outputs, target) loss.backward() optimizer.step()
running_loss += loss.item() Loss += loss.item() if batch_idx % 300 == 299: print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300)) running_loss = 0.0 e_list.append(epoch) l_list.append(running_loss / 300)
def test(): correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, dim=1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy on test set: %d %%' % (100 * correct / total))
if __name__ == '__main__': if os.path.exists("./model/model_params.pkl"): model.load_state_dict(torch.load("./model/model_params.pkl")) for epoch in range(10): train(epoch) test() torch.save(model.state_dict(), './model/model_params.pkl')
|