【源码阅读计划】浅析 Java 线程池工作原理及核心源码

为什么要用线程池?

  1. 降低资源消耗:通过重复利用现有的线程来执行任务,避免多次创建和销毁线程。
  2. 提高相应速度:因为省去了创建线程这个步骤,所以在拿到任务时,可以立刻开始执行。
  3. 提高线程的可管理性:线程是稀缺资源,如果无限制创建,不仅会消耗系统资源,还会因为线程的不合理分布导致资源调度失衡,降低系统的稳定性。使用线程池可以进行统一的分配、调优和监控。
  4. 提供附加功能:线程池的可拓展性使得我们可以自己加入新的功能,比如说定时、延时来执行某些线程。

线程池的设计

如上图所示,本文试图回答几个问题:

  1. 线程池如何维护自身状态(表示、获取、转移)?
  2. 线程池如何管理任务(任务获取,分配)?
  3. 线程池如何管理线程(表示、创建、执行任务、回收)?

线程池如何维护自身状态?

在JDK的 ThreadPoolExecutor 线程池中用一个原子整型来维护线程池的两个状态参数:

1
2
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static int ctlOf(int rs, int wc) { return rs | wc; } // rs: runState, wc: workerCount

ctl 的高 3 位被用来表示线程池运行状态 runState, 其余 29 位用来表示线程池中的线程数量 workerCount

1
2
3
4
5
private static final int RUNNING    = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
  1. RUNNING :能接受新提交的任务,并且也能处理阻塞队列中的任务;

  2. SHUTDOWN:关闭状态,不再接受新提交的任务,但却可以继续处理阻塞队列中已保存的任务。在线程池处于 RUNNING 状态时,调用 shutdown()方法会使线程池进入到该状态。(finalize() 方法在执行过程中也会调用shutdown()方法进入该状态);

  3. STOP:不能接受新任务,也不处理队列中的任务,会中断正在处理任务的线程。在线程池处于 RUNNING 或 SHUTDOWN 状态时,调用 shutdownNow() 方法会使线程池进入到该状态;

  4. TIDYING:如果所有的任务都已终止了,workerCount (有效线程数) 为0,线程池进入该状态后会调用 terminated() 方法进入TERMINATED 状态。

  5. TERMINATED:在terminated() 方法执行完后进入该状态,默认terminated()方法中什么也没有做。

    进入TERMINATED的条件如下:

    • 线程池不是RUNNING状态;
    • 线程池状态不是TIDYING状态或TERMINATED状态;
    • 如果线程池状态是SHUTDOWN并且workerQueue为空;
    • workerCount为0;
    • 设置TIDYING状态成功

五大状态的轮转过程:

二者分别通过下面两个函数获取:

1
2
private static int runStateOf(int c)     { return c & ~CAPACITY; }
private static int workerCountOf(int c) { return c & CAPACITY; }

线程池如何管理任务?

如图1所示,当用户提交一个任务时,线程池应该根据其状态做出不同的响应,对应的函数为 execute() 函数:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
int c = ctl.get(); // 获取状态表示
if (workerCountOf(c) < corePoolSize) { // 1. 如果当前线程数小于核心线程数,直接新建线程执行任务
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) { // 2. 如果核心线程数已满,且是运行状态并且队列未满,添加任务至队列
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command)) // 再次检查运行状态,如果不是运行状态就从队列中删除任务,删除成功后执行拒绝策略,因为此时线程池状态不是RUNNING
reject(command);
else if (workerCountOf(recheck) == 0) // 如果当前线程数为 0,而我们又刚刚添加了一个任务,就新建一个空任务的线程,它会去轮询任务队列执行刚刚新增的任务
addWorker(null, false);
}
else if (!addWorker(command, false)) // 添加失败,执行拒绝策略
reject(command);
}
execute函数执行过程(分配)
  1. 首先检测线程池运行状态,如果不是RUNNING,则直接拒绝,线程池要保证在RUNNING的状态下执行任务。
  2. 如果workerCount < corePoolSize,则创建并启动一个线程来执行新提交的任务。
  3. 如果workerCount >= corePoolSize,且线程池内的阻塞队列未满,则将任务添加到该阻塞队列中。
  4. 如果workerCount >= corePoolSize && workerCount < maximumPoolSize,且线程池内的阻塞队列已满,则创建并启动一个线程来执行新提交的任务。
  5. 如果workerCount >= maximumPoolSize,并且线程池内的阻塞队列已满, 则根据拒绝策略来处理该任务, 默认的处理方式是直接抛异常。

这里有一点要注意,就是在将任务添加到队列中后,做了一个recheck,这是因为在往阻塞队列中添加任务地时候,有可能阻塞队列已满,需要等待其他的任务移出队列,在这个过程中,线程池的状态可能会发生变化,所以需要double check

getTask 函数(获取)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
/**
* Performs blocking or timed wait for a task, depending on
* current configuration settings, or returns null if this worker
* must exit because of any of:
* 1. There are more than maximumPoolSize workers (due to
* a call to setMaximumPoolSize).
* 2. The pool is stopped.
* 3. The pool is shutdown and the queue is empty.
* 4. This worker timed out waiting for a task, and timed-out
* workers are subject to termination (that is,
* {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
* both before and after the timed wait, and if the queue is
* non-empty, this worker is not the last thread in the pool.
*
* @return task, or null if the worker must exit, in which case
* workerCount is decremented
*/
private Runnable getTask() {
boolean timedOut = false; // 最近一次从阻塞队列中获取任务是否超时?

for (;;) {
int c = ctl.get();
int rs = runStateOf(c);

// Check if queue empty only if necessary.
// 为true的情况:
// 1. 线程池为非RUNNING状态 且线程池正在停止
// 2. 线程池状态为非RUNNING状态 且阻塞队列为空
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount(); // 将 workCount 减 1
return null;
}

int wc = workerCountOf(c);

// Are workers subject to culling?
// timed变量用于判断是否需要进行超时控制。
// allowCoreThreadTimeOut默认是false,也就是核心线程不允许进行超时;
// wc > corePoolSize,表示当前线程池中的线程数量大于核心线程数量;
// 对于超过核心线程数量的这些线程,需要进行超时控制
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

/*
* wc > maximumPoolSize的情况是因为可能在此方法执行阶段同时执行了setMaximumPoolSize方法;
* timed && timedOut 如果为true,表示当前操作需要进行超时控制,并且上次从阻塞队列中获取任务发生了超时
* 超时说明队列中获取不到任务,即不需要这么多线程,因此可以适当减少非核心线程
* 接下来判断,如果有效线程数量大于1,或者阻塞队列是空的,那么尝试将workerCount减 1;
* 如果减1失败,则返回重试。
* 如果wc == 1时,也就说明当前线程是线程池中唯一的一个线程了。
*/
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c)) // 减少非核心线程数量
return null;
continue; //重试
}

try {
// 从阻塞队列获取任务
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : // poll:等待keepAliveTime, 若队列为空,返回 null
workQueue.take(); // take: 若队列为空,直接阻塞
if (r != null)
return r;
timedOut = true; // r 为空,表示超时了,返回循环重试
} catch (InterruptedException retry) {
timedOut = false; // 如果获取任务时当前线程发生了中断,则设置timedOut为false并返回循环重试
}
}
}

这里重要的地方是第二个if判断,目的是控制线程池的有效线程数量。由上文中的分析可以知道,在执行execute方法时,如果当前线程池的线程数量超过了corePoolSize且小于maximumPoolSize,并且workQueue已满时,则可以增加工作线程,但这时如果超时没有获取到任务,也就是timedOut为true的情况,说明workQueue已经为空了,也就说明了当前线程池中不需要那么多线程来执行任务了,可以把多余的非核心线程销毁掉,保持线程数量在corePoolSize即可。

线程池如何管理线程?

Worker 类(表示)

Worker类继承了 AbstractQueuedSynchronizer 类并且实现了 Runnable 接口。之所以继承 AbstractQueuedSynchronizer 类是因为线程池有一个需求是要获取线程的运行状态(工作中,空闲中)。Worker继承了AQS,使用AQS来实现独占锁的功能。为什么不使用ReentrantLock来实现呢?可以看到tryAcquire方法,它是不允许重入的,而ReentrantLock是允许重入的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/**
* Class Worker mainly maintains interrupt control state for
* threads running tasks, along with other minor bookkeeping.
* This class opportunistically extends AbstractQueuedSynchronizer
* to simplify acquiring and releasing a lock surrounding each
* task execution. This protects against interrupts that are
* intended to wake up a worker thread waiting for a task from
* instead interrupting a task being run. We implement a simple
* non-reentrant mutual exclusion lock rather than use
* ReentrantLock because we do not want worker tasks to be able to
* reacquire the lock when they invoke pool control methods like
* setCorePoolSize. Additionally, to suppress interrupts until
* the thread actually starts running tasks, we initialize lock
* state to a negative value, and clear it upon start (in
* runWorker).
*/
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L;

/** Thread this worker is running in. Null if factory fails. */
final Thread thread; // 持有的线程
/** Initial task to run. Possibly null. */
Runnable firstTask; // 第一次执行的任务
/** Per-thread task counter */
volatile long completedTasks; // 完成的任务数量

/**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
setState(-1); // state 默认值设为 -1,控制未执行的新建线程不该被中断
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}

/** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);
}

// Lock methods
//
// The value 0 represents the unlocked state.
// 值为 0 表示未加锁状态(线程空闲)
// The value 1 represents the locked state.
// 值为 1 表示锁定状态(线程忙)

protected boolean isHeldExclusively() { // 判断是否被锁定(线程正在执行任务), 返回 true 表示加锁(排他的)
return getState() != 0;
}

protected boolean tryAcquire(int unused) { // 尝试获取独占锁锁
if (compareAndSetState(0, 1)) { // state 为 0 才会成功,不允许重入
setExclusiveOwnerThread(Thread.currentThread()); // 设置当前线程占有锁
return true;
}
return false;
}

protected boolean tryRelease(int unused) { // 尝试释放锁
setExclusiveOwnerThread(null);
setState(0);
return true;
}

public void lock() { acquire(1); } // 获取独占锁,acuire会调用tryAcquire,tryAcquire失败会中断线程
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); } // 释放独占锁,runWorker中用来设置允许中断(state+1=0)
public boolean isLocked() { return isHeldExclusively(); } // 检查是否被加锁

void interruptIfStarted() { // 中断线程
Thread t;
// 判断是否可以中断线程:
// 线程状态不是 -1(新建状态) 且不为空且未被中断,就可以中断线程
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt(); // 中断线程
} catch (SecurityException ignore) {
}
}
}
}

上述代码可以实现:

  1. lock方法一旦获取了独占锁,表示当前线程正在执行任务中(runWorker函数在取到任务后会执行lock()方法后执行任务);
  2. 如果正在执行任务(state = 1),则不应该中断线程;
  3. 如果该线程现在不是独占锁的状态,也就是空闲(state = 0)的状态,说明它没有在处理任务,这时可以对该线程进行中断;
  4. 线程池在执行shutdown方法或tryTerminate方法时会调用interruptIdleWorkers方法来中断空闲的线程,interruptIdleWorkers方法会使用tryLock方法来判断线程池中的线程是否是空闲状态;
  5. 之所以设置为不可重入,是因为我们不希望任务在调用像setCorePoolSize这样的线程池控制方法时重新获取锁。如果使用ReentrantLock,它是可重入的,这样如果在任务中调用了如setCorePoolSize这类线程池控制的方法,会中断正在运行的线程;
addWorker 函数(创建)

addWorker函数的作用是新建一个线程,其源码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);

// Check if queue empty only if necessary.
/*
* 这个if判断
* 如果rs >= SHUTDOWN,则表示此时不再接收新任务;
* 接着判断以下3个条件,只要有1个不满足,则返回false:
* 1. rs == SHUTDOWN,这时表示关闭状态,不再接受新提交的任务,但却可以继续处理阻塞队列中已保存的任务
* 2. firsTask为空
* 3. 阻塞队列不为空
*
* 首先考虑rs == SHUTDOWN的情况;
* 这种情况下不会接受新提交的任务,所以在firstTask不为空的时候会返回false;
* 然后,如果firstTask为空,并且workQueue也为空,则返回false,
* 因为队列中已经没有任务了,不需要再添加线程了
*/
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false; // 添加失败

for (;;) {
int wc = workerCountOf(c);
// 如果wc超过CAPACITY,也就是ctl的低29位的最大值(二进制是29个1),返回false;
// 这里的core是addWorker方法的第二个参数,如果为true表示根据corePoolSize来比较,若为false则根据maximumPoolSize来比较。
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize)) // 参数 core 在此作用
return false;
if (compareAndIncrementWorkerCount(c)) // CAS 尝试修改 workerCount
break retry; // 修改成功,退出retry代码块
c = ctl.get(); // Re-read ctl // 修改失败,重新获取 ctl
if (runStateOf(c) != rs) // 线程池运行状态发生改变,重新执行外层for循环
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
// 修改成功,执行新建线程操作
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask); // 新建 Worker 对象
final Thread t = w.thread; // 每个 Worker对象都持有一个线程, 由线程工厂创建
if (t != null) { // 线程不为空, 互斥添加 Worker 对象
final ReentrantLock mainLock = this.mainLock;
mainLock.lock(); // 加锁
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
// rs < SHUTDOWN表示是RUNNING状态;
// 如果rs是RUNNING状态或者rs是SHUTDOWN状态并且firstTask为null,向线程池中添加线程
// 因为在SHUTDOWN时不会在添加新的任务,但还是会执行workQueue中的任务,所以新增一个无任务的线程可以让其从队列中获取任务
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w); // workers 是一个HashSet 负责管理Worker对象
int s = workers.size();
if (s > largestPoolSize) // 记录线程池中出现的最大的线程数量
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock(); // 解锁
}
if (workerAdded) { // Worker 对象添加成功,立即执行线程
t.start(); // 启动时会调用Worker类中的run方法,Worker本身实现了Runnable接口,所以一个Worker类型的对象也是一个线程。
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
runWorker函数(执行与回收)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/**
* Main worker run loop. Repeatedly gets tasks from queue and
* executes them, while coping with a number of issues:
*
* 1. We may start out with an initial task, in which case we
* don't need to get the first one. Otherwise, as long as pool is
* running, we get tasks from getTask. If it returns null then the
* worker exits due to changed pool state or configuration
* parameters. Other exits result from exception throws in
* external code, in which case completedAbruptly holds, which
* usually leads processWorkerExit to replace this thread.
*
* 2. Before running any task, the lock is acquired to prevent
* other pool interrupts while the task is executing, and then we
* ensure that unless pool is stopping, this thread does not have
* its interrupt set.
*
* 3. Each task run is preceded by a call to beforeExecute, which
* might throw an exception, in which case we cause thread to die
* (breaking loop with completedAbruptly true) without processing
* the task.
*
* 4. Assuming beforeExecute completes normally, we run the task,
* gathering any of its thrown exceptions to send to afterExecute.
* We separately handle RuntimeException, Error (both of which the
* specs guarantee that we trap) and arbitrary Throwables.
* Because we cannot rethrow Throwables within Runnable.run, we
* wrap them within Errors on the way out (to the thread's
* UncaughtExceptionHandler). Any thrown exception also
* conservatively causes thread to die.
*
* 5. After task.run completes, we call afterExecute, which may
* also throw an exception, which will also cause thread to
* die. According to JLS Sec 14.20, this exception is the one that
* will be in effect even if task.run throws.
*
* The net effect of the exception mechanics is that afterExecute
* and the thread's UncaughtExceptionHandler have as accurate
* information as we can provide about any problems encountered by
* user code.
*
* @param w the worker
*/
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts 设置为允许中断
boolean completedAbruptly = true; // 异常退出标志
try {
while (task != null || (task = getTask()) != null) { // getTask轮询阻塞队列
w.lock(); // 加锁
/*
* 3个判断:
* 1、runStateAtLeast(ctl.get(), STOP)为真说明当前状态大于等于STOP 此时需要给他一个中断信号
* 2、wt.isInterrupted()查看当前是否设置中断状态如果为false则说明为设置中断状态
* 3、Thread.interrupted() && runStateAtLeast(ctl.get(), STOP) 获取当前中断状态且清除中断状态
* 这个判断为真的话说明当前被设置了中断状态(有可能是线程池执行的业务代码设置的,然后重置了)且当前状态变成了大于等于STOP的状态了
*
* 判断为真的两种情况:
* 1、如果当前线程大于等于STOP 且未设置中断状态 整个判断为true 第一个runStateAtLeast(ctl.get(), STOP)为true !wt.isInterrupted()为true
* 2、第一次判断的时候不大于STOP 且当前设置了中断状态(Thread.interrupted()把中断状态又刷新了) 且设置完了之后线程池状态大于等于STOP了
* Thread.interrupted() && runStateAtLeast(ctl.get(), STOP) 为true !wt.isInterrupted()为true
*
*/
if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP)))
&& !wt.isInterrupted())
wt.interrupt(); // 设置中断
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock(); // 释放独占锁
}
}
completedAbruptly = false; // 若while循环中抛出异常这句就不会被执行,表示为异常退出循环
} finally {
processWorkerExit(w, completedAbruptly);
}
}

执行流程:

  1. while 循环通过 getTask 函数不断地从阻塞队列中获取任务;
  2. if判断:
    • 如果线程池状态大于等于STOP(正在停止)则设置当前线程的中断状态(保证当前线程中断)
    • 如果线程池状态小于STOP则清除中断状态(保证当前线程不中断)
  3. 调用 task.run() 方法执行任务;
  4. 如果 task == null, 跳出while循环,执行回收函数销毁线程;
processWorkerExit 函数(销毁)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/**
* Performs cleanup and bookkeeping for a dying worker. Called
* only from worker threads. Unless completedAbruptly is set,
* assumes that workerCount has already been adjusted to account
* for exit. This method removes thread from worker set, and
* possibly terminates the pool or replaces the worker if either
* it exited due to user task exception or if fewer than
* corePoolSize workers are running or queue is non-empty but
* there are no workers.
*
* @param w the worker
* @param completedAbruptly if the worker died due to user exception
*/
private void processWorkerExit(Worker w, boolean completedAbruptly) {
// 如果completedAbruptly值为true,则说明线程执行时出现了异常,需要将workerCount减1;
// 如果线程执行时没有出现异常,说明在getTask()方法中已经已经对workerCount进行了减1操作,这里就不必再减了。
if (completedAbruptly)
decrementWorkerCount();

final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
completedTaskCount += w.completedTasks; // 统计线程池完成任务数量
workers.remove(w); // 从线程池中移除线程Worker对象引用
} finally {
mainLock.unlock();
}

tryTerminate(); // 根据线程池状态判断是否结束线程池

int c = ctl.get();
// 当线程池状态为 RUNNING 或 SHUTDOWN 时
// 如果任务为异常结束 completedAbruptly=true, 直接 addWorker 新建线程;
// 如果allowCoreThreadTimeOut=true,并且等待队列有任务,至少保留一个worker;
// 如果allowCoreThreadTimeOut=false,workerCount不少于corePoolSize。
if (runStateLessThan(c, STOP)) {
if (!completedAbruptly) {
int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
if (min == 0 && ! workQueue.isEmpty())
min = 1;
if (workerCountOf(c) >= min) // 判断当前有效线程是否大于 1,大于的话直接return,否则会执行 addWorker 函数新建一个线程。
return; // replacement not needed
}
addWorker(null, false);
}
}

执行流程:

  1. 判断是否为异常退出,如果是说明线程执行时出现了异常,需要建 workerCount 减 1;

  2. 统计线程池完成任务数量,将Worker引用从HashSet中移除(会被jvm回收),相当于销毁线程;

  3. 根据线程池状态判断是否结束线程池;

  4. 当线程池状态为 RUNNING 或 SHUTDOWN时:

    如果任务为异常结束:

     1. 如果允许核心线程超时,并且阻塞队列中有任务,至少保留一个线程
     2. 如果不允许核心线程超时,且workerCount不少于corePoolSize,直接返回。否则新建线程
    

一个小 Demo

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
package ThreadPool;

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;

/**
* @author Lin YuHang
* @date 2022/12/1 16:08
*/
public class ThreadPoolDemo {
public static void main(String[] args) {
final int taskCount = 50;
AtomicInteger integer = new AtomicInteger(0);
// 初始化线程池
ThreadPoolExecutor executor = new ThreadPoolExecutor(10,
30,
5,
TimeUnit.SECONDS,
new ArrayBlockingQueue<Runnable>(30));
System.out.println("总任务数:" + taskCount);
long start = System.currentTimeMillis();
//任务提交
for (int i = 0; i < taskCount; i++) {
Thread thread = new Thread(() -> {
try {
Thread.sleep(500);//模拟执行耗时
System.out.println("已执行" + integer.addAndGet(1) + "个任务");
} catch (InterruptedException e) {
e.printStackTrace();
}
});
try {
//注意这里我try起来了,默认拒绝策略会报错
executor.execute(thread);
} catch (Exception e) {
System.out.println(e.getMessage());
}
}
long end = 0;
while (executor.getCompletedTaskCount() < 50) {
end = System.currentTimeMillis();
}
System.out.println("任务总耗时:" + (end - start));
}
}