为什么要用线程池?

  • 降低资源消耗:通过重复利用现有的线程来执行任务,避免多次创建和销毁线程。

  • 提高相应速度:因为省去了创建线程这个步骤,所以在拿到任务时,可以立刻开始执行。

  • 提高线程的可管理性:线程是稀缺资源,如果无限制创建,不仅会消耗系统资源,还会因为线程的不合理分布导致资源调度失衡,降低系统的稳定性。使用线程池可以进行统一的分配、调优和监控。

  • 提供附加功能:线程池的可拓展性使得我们可以自己加入新的功能,比如说定时、延时来执行某些线程。

线程池的设计

https://hexoblog-1257022783.cos.ap-chengdu.myqcloud.com/note/%E7%BA%BF%E7%A8%8B%E6%B1%A0.png

如上图所示,本文试图回答几个问题:

  1. 线程池如何维护自身状态(表示、获取、转移)?

  2. 线程池如何管理任务(任务获取,分配)?

  3. 线程池如何管理线程(表示、创建、执行任务、回收)?

线程池如何维护自身状态?

在JDK的 ThreadPoolExecutor 线程池中用一个原子整型来维护线程池的两个状态参数:

private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static int ctlOf(int rs, int wc) { return rs | wc; } // rs: runState, wc: workerCount
​

ctl 的高 3 位被用来表示线程池运行状态 runState, 其余 29 位用来表示线程池中的线程数量 workerCount

  private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;
​
  1. RUNNING :能接受新提交的任务,并且也能处理阻塞队列中的任务;

  2. SHUTDOWN:关闭状态,不再接受新提交的任务,但却可以继续处理阻塞队列中已保存的任务。在线程池处于 RUNNING 状态时,调用 shutdown()方法会使线程池进入到该状态。(finalize() 方法在执行过程中也会调用shutdown()方法进入该状态);

  3. STOP:不能接受新任务,也不处理队列中的任务,会中断正在处理任务的线程。在线程池处于 RUNNING 或 SHUTDOWN 状态时,调用 shutdownNow() 方法会使线程池进入到该状态;

  4. TIDYING:如果所有的任务都已终止了,workerCount (有效线程数) 为0,线程池进入该状态后会调用 terminated() 方法进入TERMINATED 状态。

  5. TERMINATED:在terminated() 方法执行完后进入该状态,默认terminated()方法中什么也没有做。

    进入TERMINATED的条件如下:

    • 线程池不是RUNNING状态;

    • 线程池状态不是TIDYING状态或TERMINATED状态;

    • 如果线程池状态是SHUTDOWN并且workerQueue为空;

    • workerCount为0;

    • 设置TIDYING状态成功

五大状态的轮转过程:

https://hexoblog-1257022783.cos.ap-chengdu.myqcloud.com/note/%E7%8A%B6%E6%80%81.png

二者分别通过下面两个函数获取:

    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    private static int workerCountOf(int c)  { return c & CAPACITY; }
​

线程池如何管理任务?

如图1所示,当用户提交一个任务时,线程池应该根据其状态做出不同的响应,对应的函数为 execute() 函数:

    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();                  // 获取状态表示
        if (workerCountOf(c) < corePoolSize) {        // 1. 如果当前线程数小于核心线程数,直接新建线程执行任务
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {   // 2. 如果核心线程数已满,且是运行状态并且队列未满,添加任务至队列
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))  // 再次检查运行状态,如果不是运行状态就从队列中删除任务,删除成功后执行拒绝策略,因为此时线程池状态不是RUNNING
                reject(command);
            else if (workerCountOf(recheck) == 0)     // 如果当前线程数为 0,而我们又刚刚添加了一个任务,就新建一个空任务的线程,它会去轮询任务队列执行刚刚新增的任务
                addWorker(null, false);
        }
        else if (!addWorker(command, false))        // 添加失败,执行拒绝策略
            reject(command);
    }
​

execute函数执行过程(分配)

  1. 首先检测线程池运行状态,如果不是RUNNING,则直接拒绝,线程池要保证在RUNNING的状态下执行任务。

  2. 如果workerCount < corePoolSize,则创建并启动一个线程来执行新提交的任务。

  3. 如果workerCount >= corePoolSize,且线程池内的阻塞队列未满,则将任务添加到该阻塞队列中。

  4. 如果workerCount >= corePoolSize && workerCount < maximumPoolSize,且线程池内的阻塞队列已满,则创建并启动一个线程来执行新提交的任务。

  5. 如果workerCount >= maximumPoolSize,并且线程池内的阻塞队列已满, 则根据拒绝策略来处理该任务, 默认的处理方式是直接抛异常。

这里有一点要注意,就是在将任务添加到队列中后,做了一个recheck,这是因为在往阻塞队列中添加任务地时候,有可能阻塞队列已满,需要等待其他的任务移出队列,在这个过程中,线程池的状态可能会发生变化,所以需要double check。

getTask 函数(获取)

/**
 * Performs blocking or timed wait for a task, depending on
 * current configuration settings, or returns null if this worker
 * must exit because of any of:
 * 1. There are more than maximumPoolSize workers (due to
 *    a call to setMaximumPoolSize).
 * 2. The pool is stopped.
 * 3. The pool is shutdown and the queue is empty.
 * 4. This worker timed out waiting for a task, and timed-out
 *    workers are subject to termination (that is,
 *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
 *    both before and after the timed wait, and if the queue is
 *    non-empty, this worker is not the last thread in the pool.
 *
 * @return task, or null if the worker must exit, in which case
 *         workerCount is decremented
 */
private Runnable getTask() {
    boolean timedOut = false; // 最近一次从阻塞队列中获取任务是否超时?
​
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);
​
        // Check if queue empty only if necessary.
        // 为true的情况:
        // 1. 线程池为非RUNNING状态 且线程池正在停止
        // 2. 线程池状态为非RUNNING状态 且阻塞队列为空
        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
            decrementWorkerCount();   // 将 workCount 减 1
            return null;
        }
​
        int wc = workerCountOf(c);
​
        // Are workers subject to culling?
        // timed变量用于判断是否需要进行超时控制。
        // allowCoreThreadTimeOut默认是false,也就是核心线程不允许进行超时;
        // wc > corePoolSize,表示当前线程池中的线程数量大于核心线程数量;
        // 对于超过核心线程数量的这些线程,需要进行超时控制
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
​
        /*
         * wc > maximumPoolSize的情况是因为可能在此方法执行阶段同时执行了setMaximumPoolSize方法;
         * timed && timedOut 如果为true,表示当前操作需要进行超时控制,并且上次从阻塞队列中获取任务发生了超时
         * 超时说明队列中获取不到任务,即不需要这么多线程,因此可以适当减少非核心线程
         * 接下来判断,如果有效线程数量大于1,或者阻塞队列是空的,那么尝试将workerCount减 1;
         * 如果减1失败,则返回重试。
         * 如果wc == 1时,也就说明当前线程是线程池中唯一的一个线程了。
         */
        if ((wc > maximumPoolSize || (timed && timedOut))
            && (wc > 1 || workQueue.isEmpty())) {
            if (compareAndDecrementWorkerCount(c)) // 减少非核心线程数量
                return null;
            continue; //重试
        }
​
        try {
            // 从阻塞队列获取任务
            Runnable r = timed ?
                workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : // poll:等待keepAliveTime, 若队列为空,返回 null
                workQueue.take(); // take: 若队列为空,直接阻塞
            if (r != null)
                return r;
            timedOut = true;  // r 为空,表示超时了,返回循环重试
        } catch (InterruptedException retry) {
            timedOut = false; // 如果获取任务时当前线程发生了中断,则设置timedOut为false并返回循环重试
        }
    }
}
​

这里重要的地方是第二个if判断,目的是控制线程池的有效线程数量。由上文中的分析可以知道,在执行execute方法时,如果当前线程池的线程数量超过了corePoolSize且小于maximumPoolSize,并且workQueue已满时,则可以增加工作线程,但这时如果超时没有获取到任务,也就是timedOut为true的情况,说明workQueue已经为空了,也就说明了当前线程池中不需要那么多线程来执行任务了,可以把多余的非核心线程销毁掉,保持线程数量在corePoolSize即可。

线程池如何管理线程?

Worker 类(表示)

Worker类继承了 AbstractQueuedSynchronizer 类并且实现了 Runnable 接口。之所以继承 AbstractQueuedSynchronizer 类是因为线程池有一个需求是要获取线程的运行状态(工作中,空闲中)。Worker继承了AQS,使用AQS来实现独占锁的功能。为什么不使用ReentrantLock来实现呢?可以看到tryAcquire方法,它是不允许重入的,而ReentrantLock是允许重入的。

/**
 * Class Worker mainly maintains interrupt control state for
 * threads running tasks, along with other minor bookkeeping.
 * This class opportunistically extends AbstractQueuedSynchronizer
 * to simplify acquiring and releasing a lock surrounding each
 * task execution.  This protects against interrupts that are
 * intended to wake up a worker thread waiting for a task from
 * instead interrupting a task being run.  We implement a simple
 * non-reentrant mutual exclusion lock rather than use
 * ReentrantLock because we do not want worker tasks to be able to
 * reacquire the lock when they invoke pool control methods like
 * setCorePoolSize.  Additionally, to suppress interrupts until
 * the thread actually starts running tasks, we initialize lock
 * state to a negative value, and clear it upon start (in
 * runWorker).
 */
private final class Worker
    extends AbstractQueuedSynchronizer
    implements Runnable
{
    /**
     * This class will never be serialized, but we provide a
     * serialVersionUID to suppress a javac warning.
     */
    private static final long serialVersionUID = 6138294804551838833L;
​
    /** Thread this worker is running in.  Null if factory fails. */
    final Thread thread;                        // 持有的线程
    /** Initial task to run.  Possibly null. */
    Runnable firstTask;                         // 第一次执行的任务
    /** Per-thread task counter */
    volatile long completedTasks;                   // 完成的任务数量
​
    /**
     * Creates with given first task and thread from ThreadFactory.
     * @param firstTask the first task (null if none)
     */
    Worker(Runnable firstTask) {
        setState(-1); // state 默认值设为 -1,控制未执行的新建线程不该被中断
        this.firstTask = firstTask;
        this.thread = getThreadFactory().newThread(this);
    }
​
    /** Delegates main run loop to outer runWorker  */
    public void run() {
        runWorker(this);
    }
​
    // Lock methods
    //
    // The value 0 represents the unlocked state.
    // 值为 0 表示未加锁状态(线程空闲)
    // The value 1 represents the locked state.
    // 值为 1 表示锁定状态(线程忙)
​
    protected boolean isHeldExclusively() {   // 判断是否被锁定(线程正在执行任务), 返回 true 表示加锁(排他的)
        return getState() != 0;
    }
​
    protected boolean tryAcquire(int unused) {  // 尝试获取独占锁锁
        if (compareAndSetState(0, 1)) {     // state 为 0 才会成功,不允许重入
            setExclusiveOwnerThread(Thread.currentThread());  // 设置当前线程占有锁
            return true;
        }
        return false;
    }
​
    protected boolean tryRelease(int unused) {  // 尝试释放锁
        setExclusiveOwnerThread(null);
        setState(0);
        return true;
    }
​
    public void lock()        { acquire(1); }         // 获取独占锁,acuire会调用tryAcquire,tryAcquire失败会中断线程
    public boolean tryLock()  { return tryAcquire(1); }
    public void unlock()      { release(1); }         // 释放独占锁,runWorker中用来设置允许中断(state+1=0)
    public boolean isLocked() { return isHeldExclusively(); } // 检查是否被加锁
​
    void interruptIfStarted() { // 中断线程
        Thread t;
        // 判断是否可以中断线程:
        // 线程状态不是 -1(新建状态) 且不为空且未被中断,就可以中断线程
        if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
            try {
                t.interrupt();            // 中断线程
            } catch (SecurityException ignore) {
            }
        }
    }
}
​

上述代码可以实现:

lock方法一旦获取了独占锁,表示当前线程正在执行任务中(runWorker函数在取到任务后会执行lock()方法后执行任务);如果正在执行任务(state = 1),则不应该中断线程;如果该线程现在不是独占锁的状态,也就是空闲(state = 0)的状态,说明它没有在处理任务,这时可以对该线程进行中断;线程池在执行shutdown方法或tryTerminate方法时会调用interruptIdleWorkers方法来中断空闲的线程,interruptIdleWorkers方法会使用tryLock方法来判断线程池中的线程是否是空闲状态;之所以设置为不可重入,是因为我们不希望任务在调用像setCorePoolSize这样的线程池控制方法时重新获取锁。如果使用ReentrantLock,它是可重入的,这样如果在任务中调用了如setCorePoolSize这类线程池控制的方法,会中断正在运行的线程;

addWorker 函数(创建)

addWorker函数的作用是新建一个线程,其源码如下:

private boolean addWorker(Runnable firstTask, boolean core) {
    retry:
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);
​
        // Check if queue empty only if necessary.
        /*
         * 这个if判断
         * 如果rs >= SHUTDOWN,则表示此时不再接收新任务;
         * 接着判断以下3个条件,只要有1个不满足,则返回false:
         *  1. rs == SHUTDOWN,这时表示关闭状态,不再接受新提交的任务,但却可以继续处理阻塞队列中已保存的任务
         *  2. firsTask为空
         *  3. 阻塞队列不为空
         *
         * 首先考虑rs == SHUTDOWN的情况;
         * 这种情况下不会接受新提交的任务,所以在firstTask不为空的时候会返回false;
         * 然后,如果firstTask为空,并且workQueue也为空,则返回false,
         * 因为队列中已经没有任务了,不需要再添加线程了
         */
        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))
            return false;                         // 添加失败
​
        for (;;) {
            int wc = workerCountOf(c);
            // 如果wc超过CAPACITY,也就是ctl的低29位的最大值(二进制是29个1),返回false;
            // 这里的core是addWorker方法的第二个参数,如果为true表示根据corePoolSize来比较,若为false则根据maximumPoolSize来比较。
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))        // 参数 core 在此作用
                return false;
            if (compareAndIncrementWorkerCount(c))              // CAS 尝试修改 workerCount
                break retry;                        // 修改成功,退出retry代码块
            c = ctl.get();  // Re-read ctl                  // 修改失败,重新获取 ctl
            if (runStateOf(c) != rs)                    // 线程池运行状态发生改变,重新执行外层for循环
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
        }
    }
    // 修改成功,执行新建线程操作
    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
        w = new Worker(firstTask);                    // 新建 Worker 对象
        final Thread t = w.thread;                    // 每个 Worker对象都持有一个线程, 由线程工厂创建
        if (t != null) {                        // 线程不为空, 互斥添加 Worker 对象
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();                      // 加锁
            try {
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                int rs = runStateOf(ctl.get());
        // rs < SHUTDOWN表示是RUNNING状态;
                // 如果rs是RUNNING状态或者rs是SHUTDOWN状态并且firstTask为null,向线程池中添加线程
                // 因为在SHUTDOWN时不会在添加新的任务,但还是会执行workQueue中的任务,所以新增一个无任务的线程可以让其从队列中获取任务
                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    workers.add(w);                   // workers 是一个HashSet 负责管理Worker对象
                    int s = workers.size();
                    if (s > largestPoolSize)              // 记录线程池中出现的最大的线程数量
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();                    // 解锁
            }
            if (workerAdded) {                      // Worker 对象添加成功,立即执行线程
                t.start();                        // 启动时会调用Worker类中的run方法,Worker本身实现了Runnable接口,所以一个Worker类型的对象也是一个线程。
                workerStarted = true;
            }
        }
    } finally {
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}
​

runWorker函数(执行与回收)

/**
 * Main worker run loop.  Repeatedly gets tasks from queue and
 * executes them, while coping with a number of issues:
 *
 * 1. We may start out with an initial task, in which case we
 * don't need to get the first one. Otherwise, as long as pool is
 * running, we get tasks from getTask. If it returns null then the
 * worker exits due to changed pool state or configuration
 * parameters.  Other exits result from exception throws in
 * external code, in which case completedAbruptly holds, which
 * usually leads processWorkerExit to replace this thread.
 *
 * 2. Before running any task, the lock is acquired to prevent
 * other pool interrupts while the task is executing, and then we
 * ensure that unless pool is stopping, this thread does not have
 * its interrupt set.
 *
 * 3. Each task run is preceded by a call to beforeExecute, which
 * might throw an exception, in which case we cause thread to die
 * (breaking loop with completedAbruptly true) without processing
 * the task.
 *
 * 4. Assuming beforeExecute completes normally, we run the task,
 * gathering any of its thrown exceptions to send to afterExecute.
 * We separately handle RuntimeException, Error (both of which the
 * specs guarantee that we trap) and arbitrary Throwables.
 * Because we cannot rethrow Throwables within Runnable.run, we
 * wrap them within Errors on the way out (to the thread's
 * UncaughtExceptionHandler).  Any thrown exception also
 * conservatively causes thread to die.
 *
 * 5. After task.run completes, we call afterExecute, which may
 * also throw an exception, which will also cause thread to
 * die. According to JLS Sec 14.20, this exception is the one that
 * will be in effect even if task.run throws.
 *
 * The net effect of the exception mechanics is that afterExecute
 * and the thread's UncaughtExceptionHandler have as accurate
 * information as we can provide about any problems encountered by
 * user code.
 *
 * @param w the worker
 */
final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    w.unlock(); // allow interrupts 设置为允许中断
    boolean completedAbruptly = true; // 异常退出标志
    try {
        while (task != null || (task = getTask()) != null) {    // getTask轮询阻塞队列
            w.lock();   // 加锁
            /*
            * 3个判断:
                * 1、runStateAtLeast(ctl.get(), STOP)为真说明当前状态大于等于STOP 此时需要给他一个中断信号
                * 2、wt.isInterrupted()查看当前是否设置中断状态如果为false则说明为设置中断状态
                * 3、Thread.interrupted() && runStateAtLeast(ctl.get(), STOP) 获取当前中断状态且清除中断状态
                *    这个判断为真的话说明当前被设置了中断状态(有可能是线程池执行的业务代码设置的,然后重置了)且当前状态变成了大于等于STOP的状态了
                *
             * 判断为真的两种情况:
                * 1、如果当前线程大于等于STOP 且未设置中断状态 整个判断为true 第一个runStateAtLeast(ctl.get(), STOP)为true !wt.isInterrupted()为true
                * 2、第一次判断的时候不大于STOP 且当前设置了中断状态(Thread.interrupted()把中断状态又刷新了) 且设置完了之后线程池状态大于等于STOP了
                *    Thread.interrupted() && runStateAtLeast(ctl.get(), STOP) 为true !wt.isInterrupted()为true
                *
            */
            if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP)))
                && !wt.isInterrupted())
                wt.interrupt();     // 设置中断
            try {
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    afterExecute(task, thrown);
                }
            } finally {
                task = null;
                w.completedTasks++;
                w.unlock();     // 释放独占锁
            }
        }
        completedAbruptly = false;  // 若while循环中抛出异常这句就不会被执行,表示为异常退出循环
    } finally {
        processWorkerExit(w, completedAbruptly);
    }
}
​

执行流程:

  1. while 循环通过 getTask 函数不断地从阻塞队列中获取任务;

  2. if判断:

    • 如果线程池状态大于等于STOP(正在停止)则设置当前线程的中断状态(保证当前线程中断)

    • 如果线程池状态小于STOP则清除中断状态(保证当前线程不中断)

  3. 调用 task.run() 方法执行任务;

  4. 如果 task == null, 跳出while循环,执行回收函数销毁线程;

processWorkerExit 函数(销毁)

/**
 * Performs cleanup and bookkeeping for a dying worker. Called
 * only from worker threads. Unless completedAbruptly is set,
 * assumes that workerCount has already been adjusted to account
 * for exit.  This method removes thread from worker set, and
 * possibly terminates the pool or replaces the worker if either
 * it exited due to user task exception or if fewer than
 * corePoolSize workers are running or queue is non-empty but
 * there are no workers.
 *
 * @param w the worker
 * @param completedAbruptly if the worker died due to user exception
 */
private void processWorkerExit(Worker w, boolean completedAbruptly) {
    // 如果completedAbruptly值为true,则说明线程执行时出现了异常,需要将workerCount减1;
    // 如果线程执行时没有出现异常,说明在getTask()方法中已经已经对workerCount进行了减1操作,这里就不必再减了。
    if (completedAbruptly)
        decrementWorkerCount();

    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        completedTaskCount += w.completedTasks; // 统计线程池完成任务数量
        workers.remove(w);						// 从线程池中移除线程Worker对象引用
    } finally {
        mainLock.unlock();
    }

    tryTerminate(); // 根据线程池状态判断是否结束线程池

    int c = ctl.get();
    // 当线程池状态为 RUNNING 或 SHUTDOWN 时
    // 如果任务为异常结束 completedAbruptly=true, 直接 addWorker 新建线程;
    // 如果allowCoreThreadTimeOut=true,并且等待队列有任务,至少保留一个worker;
    // 如果allowCoreThreadTimeOut=false,workerCount不少于corePoolSize。
    if (runStateLessThan(c, STOP)) {
        if (!completedAbruptly) {
            int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
            if (min == 0 && ! workQueue.isEmpty())
                min = 1;
            if (workerCountOf(c) >= min) // 判断当前有效线程是否大于 1,大于的话直接return,否则会执行 addWorker 函数新建一个线程。
                return; // replacement not needed
        }
        addWorker(null, false);
    }
}

执行流程:

  1. 判断是否为异常退出,如果是说明线程执行时出现了异常,需要建 workerCount 减 1;

  2. 统计线程池完成任务数量,将Worker引用从HashSet中移除(会被jvm回收),相当于销毁线程;

  3. 根据线程池状态判断是否结束线程池;

  4. 当线程池状态为 RUNNING 或 SHUTDOWN时:

    如果任务为异常结束:

     1. 如果允许核心线程超时,并且阻塞队列中有任务,至少保留一个线程
     2. 如果不允许核心线程超时,且workerCount不少于corePoolSize,直接返回。否则新建线程

一个小 DEMO

package ThreadPool;
​
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
​
/**
 * @author Lin YuHang
 * @date 2022/12/1 16:08
*/
public class ThreadPoolDemo {
    public static void main(String[] args) {
        final int taskCount = 50;
        AtomicInteger integer = new AtomicInteger(0);
        // 初始化线程池
        ThreadPoolExecutor executor = new ThreadPoolExecutor(10,
                30,
                5,
                TimeUnit.SECONDS,
                new ArrayBlockingQueue<Runnable>(30));
        System.out.println("总任务数:" + taskCount);
        long start = System.currentTimeMillis();
        //任务提交
        for (int i = 0; i < taskCount; i++) {
            Thread thread = new Thread(() -> {
                try {
                    Thread.sleep(500);//模拟执行耗时
                    System.out.println("已执行" + integer.addAndGet(1) + "个任务");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            });
            try {
                //注意这里我try起来了,默认拒绝策略会报错
                executor.execute(thread);
            } catch (Exception e) {
                System.out.println(e.getMessage());
            }
        }
        long end = 0;
        while (executor.getCompletedTaskCount() < 50) {
            end = System.currentTimeMillis();
        }
        System.out.println("任务总耗时:" + (end - start));
    }
}
​